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Adaptive Slepian-Wolf Decoding Based On
Expectation Propagation
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Abstract—A major difficulty that plagues the practical use
of Slepian-Wolf (SW) coding (and distributed source coding in
general) is that the precise correlation among sources needs to
be known a priori. However, belief propagation (BP) algorithm
cannot adapt efficiently to the statistical change of the correlation.
This paper proposes an adaptive SW decoding scheme which can
perform online time-varying correlation estimation at the bit-level
by incorporating expectation propagation (EP) algorithm. More-
over, we compare the proposed EP-based approach with Monte
Carlo method using particle filtering (PF) algorithm. Our results
show that the proposed EP estimator obtains the comparable
estimation accuracy with less computational complexity than the
PF method.

Index Terms—Adaptive decoding, Distributed algorithms,
Source coding, Data compression

I. INTRODUCTION

Slepian-Wolf (SW) coding is a technique to losslessly
compress correlated remote sources separately and decompress
them jointly [1]. Numerous channel coding based SW coding
schemes have been proposed [2], [3]. However, the funda-
mental assumption is that the correlation statistics needs to
be known accurately a priori. Actually in many real-world
applications, such as sensor networks, the correlation statistics
among sensors cannot be obtained easily and may vary over
both space and time. Since the decoding performance of
distributed source coding (DSC) relies on the knowledge of
correlation significantly, the design of an online correlation
estimation scheme becomes an important research topic both
in theoretical study and practical applications [4]–[6].

Here we consider asymmetric SW coding of two binary
correlated sources X and Y , where the relationship is modeled
as a virtual binary symmetric channel (BSC) with a time-
varying crossover probability. For the crossover probability
estimation, many algorithms were studied in the literature.
In [4], the residual redundancies in LDPC syndromes are
used to estimate the crossover probability between two corre-
lated binary sources using Mean-Intrinsic-LLR. However, this
algorithm works only for highly correlated sources. In [5],
[6], the expectation maximization (EM) algorithm was used
to estimate the crossover probability. However, the crossover
probability is assumed to be constant and does not change
within each codeword block. In [7] we considered adap-
tive correlation estimation with a single factor graph. The
algorithm can handle sources with both weak and strong
correlations and the statistics may vary dynamically. However,
since the correlation parameter is continuous and cannot be
parametrized in general, we incorporated Monte Carlo step
into standard BP. The resulting particle based BP (PBP) algo-
rithm handles correlation estimation well but with significant
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computational overhead as the computational complexity of
BP algorithm increases exponentially with the alphabet size.

In this letter, we consider another possible workaround for
approximate inference. Instead of using Monte Carlo tech-
niques, we explore the possibility of deterministic approxima-
tion, in particular, through the use of expectation propagation
(EP). Comparing to Monte Carlo techniques, deterministic
approximation typically is much faster but is less flexible. It
may not work for all problems and is also more mathematically
involved. In the following, we demonstrate how EP can be
used for adaptive SW decoding. Moreover, we compare the
performance of the EP estimator with PBP estimator [7]–
[9] under the same setup. Our simulation results show that
the proposed EP estimator obtains the comparable estimation
accuracy with less computational complexity comparing to
PBP. Further, the EP estimator does not depend on the initial
estimation of crossover probability and offers a good real-time
estimation for the crossover probability. As a result, a lower
decoding error rate is possible comparing to a standard BP-
based SW decoder.

II. FACTOR GRAPH CONSTRUCTION OF SW DECODER
WITH CROSSOVER PROBABILITY ESTIMATION

A factor graph for both SW decoding and correlation
tracking is illustrated in Fig. 1. The factor graph is more or less
the same as that used in our prior work [7]. Note that regions
II and III in Fig. 1 alone contribute the same factor graph as
that used in traditional LDPC-based SW decoding. A block
of X (x1, x2, · · · , xN ) is compressed into M syndrome bits
s1, s2, · · · , sM , thus resulting in M : N compression. Here,
xi and yi are realizations of nodes Xi and Yi, respectively. In
Region III, syndrome factor nodes hk, k = 1, 2, . . . , M take
into account the constraints imposed by the received syndrome
bit sk. In Region II, factor node fi plays a role of providing
a predetermined likelihood p(yi|xi, ρ) to variable node Xi for
LDPC-based SW decoding, where ρ denotes the crossover
probability. According to the relationship between xi and yi

in BSC, the corresponding factor function of fi is defined as

fi(ρ, xi, yi) = ρxi⊕yi(1− ρ)1⊕xi⊕yi , (1)

where ⊕ is the bitwise sum of two elements.
However, in reality, crossover probability may vary over

time, denoted by ρt, and the perfect knowledge of time-
varying crossover probability may not always be available at
the decoder. Thus, in the case without feedback channels, it is
necessary to perform an online crossover probability estima-
tion to avoid the degradation of decoding performance. It also
means that each factor node fi will periodically update the
likelihood p(yi|xi, ρt) for the respective bit variable node Xi

when a new crossover probability estimate of ρt is available,
instead of using a predetermined likelihood p(yi|xi, ρ).
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Fig. 1. Factor graph of adaptive SW decoding.

To enable the online estimation of time-varying crossover
probability ρt, we introduce extra variable nodes Pj and factor
nodes gj , j = 1, 2, . . . , N ′ (see Region I of Fig. 1). Here,
we call the number of factor nodes in Region II connecting
to each variable node Pj the connection ratio C 1, which is
equal to four in Fig. 1. In Region I, each variable node Pj is
used to model the time-varying crossover probability ρt of a
block of C number of code bits. Moreover, the factor function
gj(ρj) of factor node gj corresponds to the a priori distribution
for variable ρj and will be discussed later. Consequently,
by introducing crossover probability estimation in Region I,
likelihood factor function (1) will be updated to

fi(ρj , xi, yi) = ρxi⊕yi
j (1− ρj)

1⊕xi⊕yi . (2)

III. POSTERIOR APPROXIMATION ON FACTOR GRAPH

In Bayesian inference, the estimation of crossover proba-
bility ρj corresponds to the estimation of its posterior dis-
tribution, i.e. p(ρj |yj), where yj = (yi|i ∈ N \gj (Pj)), and
N \gj (Pj) represents the set of all neighbors’ indices for a
variable node Pj except the index of gj . According to the
Bayes’ rule, the posterior distribution over variable ρj in Fig.
1 can be written as

p(ρj |yj) =
1

Zj

∏

i∈N\gj (Pj)

p(ρj)p(yi|ρj)

=
1

Zj

∏

i∈N\gj (Pj)

∫

xi

p(ρj)p(xi)p(yi|xi, ρj)

=
1

Zj
g(ρj)

∏

i∈N\gj (Pj)

∑
xi

f(ρj , xi, yi)mXi→fi(xi),

(3)

where Zj =
∫

ρj

∏
i∈N\gj (Pj)

p(ρj)p(yi|ρj) is a normaliza-
tion constant, p(ρj) = gj(ρj), p(yi|xi, ρj) = f(ρj , xi, yi),
the a priori distribution p(xi) is captured by the message
mXi→fi(xi) with binary sources xi taking 0 or 1 defined in
[10]. Moreover, according to message passing algorithm [10],
the posterior distribution (3) can be written as

p(ρj |yj) =
1

Zj
mgj→Pj (ρj)

∏

i∈N\gj (Pj)

mfi→Pj (ρj). (4)

However, direct evaluation of the posterior distribu-
tion through (4) would be infeasible, since the mes-
sage mfi→Pj (ρj) =

∑
xi∈[0,1] f(ρj , xi, yi)mXi→fi(xi)

has two terms and the product of all the messages∏
i∈N\gj (Pj)

mfi→Pj (ρj) has total 2C number of terms, where
C = |N \gj (Pj)| is the connection ratio, and it can be a large

1To estimate a stationary crossover probability, we can set the connection
ratio equal to the code length.

number (e.g. 50 to 10, 000 in our study). To solve this problem,
we resort to EP algorithm to approximate the posterior in the
following section.

A. Posterior Approximation Using EP

Briefly speaking, EP algorithm attempts to seek an approxi-
mate posterior distribution restricted in exponential family that
can be very close to the true posterior distribution through
minimizing the Kullback Leibler (KL) divergence between the
true distribution and the approximation [11]. In our problem,
we assume an approximation to p(ρj |yj) of (4) in the form
q(ρj |yj) = 1

Zj
m̃gj→Pj

(ρj)
∏

i∈N\gj (Pj)
m̃fi→Pj

(ρj), where
each original message mfi→Pj

(ρj) in (4) is replaced by an
approximating message m̃fi→Pj

(ρj) belonging to a tractable
distribution in exponential family. The approximation of each
message m̃fi→Pj

(ρj) is achieved by minimizing KL diver-
gence in the context of all the remaining messages.

Note that Beta distribution is defined as

Beta(x, α, β) =
1

beta(α, β)
xα−1(1− x)β−1, (5)

where α and β are shape parameters, beta(α, β) represents
Beta function. By comparing (2) with Beta distribution (5),
likelihood function (2) can be represented in terms of Beta
distribution with respect to variable ρj as parameter:

fi(ρj , xi, yi) = beta ((xi ⊕ yi) + 1, (1⊕ xi ⊕ yi) + 1)

× Beta (ρj , (xi ⊕ yi) + 1, (1⊕ xi ⊕ yi) + 1) .
(6)

The original EP algorithm proposed by Minka is applied
to approximate a mixture of Gaussian distributions in clutter
problem [11]. In this paper, our problem is to estimate time-
varying crossover probability given observations from neigh-
boring factor nodes (see (3) and (6)). Thus, EP is extended
to approximate a mixture of Beta distributions instead of
Gaussian distributions in our problem.

In addition, to approximate a posterior distribution of
crossover probability, it is computationally favorable to choose
a conjugate prior for the likelihood function based on Bayesian
theorem. Since Beta distribution is the conjugate prior for
itself, we choose g(ρj) = Beta(ρj , α

0
j , β

0
j ) as the prior

distribution with the prior parameter α0
j and β0

j .
EP algorithm processes in the following. For the ease of

exposition, we denote by q(ρj) the approximated posterior
distribution instead of q(ρj |yj) in the rest of this letter.
1. Initialize the prior messages for the crossover probability
variables

gj(ρj) = Beta(ρj , α
0
j , β

0
j ) = z0

j ρ
α0

j−1

j (1− ρj)
β0

j−1, (7)

with α0
j = 2, β0

j =
α0

j−1

ρ0 + 2 − α0
j and z0

j = 1

beta(α0
j ,β0

j )
, where

ρ0 is the initial crossover probability for SW decoding, β0
j and

α0
j are shape parameters for Beta distribution.

2. Initialize the likelihood messages from the channel output

m̃fi→Pj (ρj) = zijρ
αij−1

j (1− ρj)
βij−1 (8)

with βij = 1, αij = 1 and zij = 1, where the values selection
for the above parameters guarantee that ρj in (8) is equality
likely before LDPC decoding.
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Fig. 2. Estimation of time-varying crossover probability.

3. Initialize the posterior probability distributions of the
crossover probability variables

q(ρj) = Zjρ
αnew

j −1

j (1− ρj)
βnew

j −1, (9)

with αnew
j = α0

j , βnew
j = β0

j and Zj = z0
j .

4. Until all m̃fi→Pj
(ρj) converge:

For each variable node Pj

For each factor node fi, where i ∈ N \gj (Pj)
4.1 Remove m̃fi→Pj (ρj) from the posterior q(ρj)

α
tmp
j = αnew

j − (αij − 1); β
tmp
j = βnew

j − (βij − 1) (10)

4.2 Update αnew
j and βnew

j according to moment matching

αnew
j =

m1(m1 −m2)

m2 −m2
1

; βnew
j = αnew

j (
1

m1
− 1) (11)

m1 =
(α′ + y) + β′(2y−1) (α′(α′ + 1))

(1−y)
Lr(x)

(α′ + β′ + 1)
(
1 + ( β′

α′ )
(2y−1)Lr(x)

) , (12)

m2 =
(α′ + 1)

(
α′ + 2y + (α′(α′ + 2))

(1−y)
β′(2y−1)Lr(x)

)

(α′ + β′ + 2)(α′ + β′ + 1)
(
1 + ( β′

α′ )
(2y−1)Lr(x)

) ,

(13)

where for simplify notations, α′ = α
tmp
j , β′ = β

tmp
j , and

Lr(x) =
mXi→fi

(1)

mXi→fi
(0)

.
4.3 Set approximated message

αij = αnew
j − (α

tmp
j − 1); βij = βnew

j − (β
tmp
j − 1);

zij = Zj

beta(αtmp
j , β

tmp
j )beta(αij , βij)

beta(αnew
j , βnew

j )
.

(14)

IV. RESULTS

First, we study the performance of the proposed EP esti-
mator for time-varying crossover probability. Fig. 2 shows the
estimated results of a sinusoidally changing correlation, where
the crossover probability changes sinusoidally from 0.05 to
0.3, N = 10, 000, C = 50, and ρ0 is 0.1 above the mean of
true crossover probability. It can be seen that the proposed EP
estimator achieves the comparable estimation accuracy with
the PBP estimator, even though the initial crossover probability
is far away from the mean of the time-varying crossover
probability.

Then, we study the decoding performances of SW de-
coder with and without EP/PBP estimator in terms of con-
stant crossover probability (see Fig. 3(a)) and time-varying
crossover probability (see Fig. 3(b)), respectively. The follow-
ing results are obtained over 10,000 trails with N = 10, 000.
The EP/PBP estimator starts working after 50 BP iterations
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Fig. 3. BER vs. compression ratio for SW decoder with (a) constant crossover
probability and (b) time-varying crossover probability, respectively.

and then is performed periodically every 20 BP iterations until
BP decoder successfully decodes the codeword or reaches its
maximum number of iterations (i.e. 150 in our experiment).
From Fig. 3(a), we can see that there is no obvious difference
of performance between the proposed EP based decoder
and PBP decoder for constant crossover probability, and we
observe a small performance gap between EP based decoder
and PBP decoder for time-varying crossover probability in
Fig. 3(b). On the other hand, the decoding performance of
SW decoders with EP/PBP estimator are significantly better
than that of the standard BP-based SW decoder in both Fig.
3(a) and 3(b). It is important to point out that the additional
computational overhead of the proposed EP based decoder is
less than 10% of the standard BP-based SW decoder. In the
following comparison, the proposed EP and PBP algorithms
are implemented in MATLAB with Java, and executed on an
intel i7 CPU with 100 trails. In our simulation, EP based
decoder requires about 68s, while PBP decoder needs 814s.
We can see that EP based decoder is much faster than PBP
based decoder. Thus, we believe that proposed SW decoder
with EP estimator is a practical improved alternative of the
standard BP-based SW decoder and PBP decoder.
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